答
(1)在等腰梯形ABCD中,AD=BC=10
又∵A(0,8)
∴OA=8
∴OD==6
∴D(-6,0)
(2)作BH⊥DE于H,过B点作BE∥AC交x轴于点E,
∵AB∥CE,BE∥AC,
∴ABEC是平行四边形,
∴AB=CE,BE=AC,
又∵ABCD为等腰梯形,
∴AC=BD,
∴BE=BD,
而AC⊥BD,AB∥CE,
∴∠DPC=∠DBE=90°,
∵BH⊥DE,
∴H为DE的中点,即BH为直角三角形DBE斜边DE上的中线,
∴BH=DE=(DC+CE)=(DC+AB)=×34=17
∵BC=13
∴CH==7
∴OH=AB=CE=HE-HC=17-7=10
∴B(10,17)
∴过B点的反比例函数的解析式为:
y=
(3)过点D作DN∥PC交PE的延长线于点M,交HF的延长线于点N,过点M作MI∥EF交BN于点I
易证四边形EFIM和四边形MNHP是平行四边形
∴MI=EF=DE,MN=PH
又∵∠EDM=∠IMN,∠DEM=∠EFI=∠MIN
∴△EDM≌△IMN
∴DM=MN
∵AC⊥BD,DN∥PC,
∴∠PDM=∠CPQ=90°,∠DPM=∠QCP=90°-∠SPC
由(2)知:∠BDC=45°,而∠DPC=90°,
∴PD=PC
∴△PDM≌△CPQ
∴DM=PQ=PH
∴=1