已知关于x的方程kx2-2(k+1)x+k-1=0有两个不相等的实数根.(1)求k的取值范围;(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.
问题描述:
已知关于x的方程kx2-2(k+1)x+k-1=0有两个不相等的实数根.
(1)求k的取值范围;
(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.
答
(1)∵方程有两个不相等的实数根,∴△=[-2(k+1)]2-4k(k-1)=12k+4>0,且k≠0,解得k>-13,且k≠0,即k的取值范围是k>-13,且k≠0;(2)假设存在实数k,使得方程的两个实数根x1,x2的倒数和为0,则x1,x2不...