过抛物线y2=4x的焦点F的直线与抛物线交于A、B两点,则OA•OB=_.

问题描述:

过抛物线y2=4x的焦点F的直线与抛物线交于A、B两点,则

OA
OB
=______.

由题意知,抛物线y2=4x的焦点坐标为( 1,0),∴直线AB的方程为y=k(x-1),

y2=4x
y=k(x−1)
得k2x2-(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),
x1+x2
2k2+ 4
k2
x1x2=1
,y1•y2=k(x1-1)•k(x2-1)=k2[x1•x2-(x1+x2)+1]
OA
OB
=x1•x2+y1•y2=1+k2(2−
2k2+4
k2
) =−3

故答案为:-3.