已知P是直线3x+4y+8=0上的动点,PA,PB是圆想x^2+y^2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,求四边

问题描述:

已知P是直线3x+4y+8=0上的动点,PA,PB是圆想x^2+y^2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,求四边
PACB面积的最小值

=2√2.
圆是圆心在(1,1),半径为1的圆,PACB面积=PAxAC=PA.
PA=√(PC^2-1)
可知 PC最小时,PA最小.
点到直线距离最小,即PC=(3+4+8)/5=3.
PA=2√2