已知空间四边形ABCD中AB=BC,CD=DA,M,N,P,Q分别是边AB,BC,CD,DA的中点(如图)求证MNPQ是一个矩形.
问题描述:
已知空间四边形ABCD中AB=BC,CD=DA,M,N,P,Q分别是边AB,BC,CD,DA的中点(如图)求证MNPQ是一个矩形.
答
证明:连接AC,在△ABC中,
∵AM=MB,CN=NB,∴MN∥AC
在△ADC中,∵AQ=QD,CP=PD,
∴QP∥AC,∴MN∥QP
同理,连接BD可证MQ∥NP
∴MNPQ是平行四边
取AC的中点K,连BK,DK
∵AB=BC,∴BK⊥AC,
∵AD=DC,∴DK⊥AC.
因此平面BKD与AC垂直
∵BD在平面BKD内,∴BD⊥AC
∵MQ∥BD,QP∥AC,∴MQ⊥QP,即∠MQP为直角
故MNPQ是矩形.