已知奇函数f(x)在定义域(-1,1)上单调递减,求使不等式f(a-2)+f(6-3a)<0成立的实数a的取值范围.
问题描述:
已知奇函数f(x)在定义域(-1,1)上单调递减,求使不等式f(a-2)+f(6-3a)<0成立的实数a的取值范围.
答
∵奇函数f(x)在定义域(-1,1)上单调递减,
∴不等式f(a-2)+f(6-3a)<0
可化为f(a-2)<-f(6-3a)
即f(a-2)<f(3a-6)
即
a−2>3a−6 a−2<1 3a−6>−1
解得:
<a<25 3
故实数a的取值范围
<a<25 3