设△ABC的内角A,B,C所对的边a,b,c成等比数列,则sinA+cosAtanC/sinB+cosBtanC的取值范围是_.

问题描述:

设△ABC的内角A,B,C所对的边a,b,c成等比数列,则

sinA+cosAtanC
sinB+cosBtanC
的取值范围是______.

设三边的公比是q,三边为a,aq,aq2,原式=sinAcosC+cosAsinCsinBcosC+cosBsinC=sin(A+C)sin(B+C)=sinBsinA=ba=q∵aq+aq2>a,①a+aq>aq2②a+aq2>aq,③解三个不等式可得q >5−120 <q<5+12,综上有 5−12<q<5...