设△ABC的内角A,B,C所对的边a,b,c成等比数列,则sinA+cosAtanC/sinB+cosBtanC的取值范围是_.
问题描述:
设△ABC的内角A,B,C所对的边a,b,c成等比数列,则
的取值范围是______. sinA+cosAtanC sinB+cosBtanC
答
设三边的公比是q,三边为a,aq,aq2,原式=sinAcosC+cosAsinCsinBcosC+cosBsinC=sin(A+C)sin(B+C)=sinBsinA=ba=q∵aq+aq2>a,①a+aq>aq2②a+aq2>aq,③解三个不等式可得q >5−120 <q<5+12,综上有 5−12<q<5...