设f(x)在[a,b]上连续,且f(x)>0,证明:∫b a f(x)dx*∫b a 1/f(x)dx≥(b-a)^2

问题描述:

设f(x)在[a,b]上连续,且f(x)>0,证明:∫b a f(x)dx*∫b a 1/f(x)dx≥(b-a)^2

令f(x)=(∫b a f(t)dt ) x^2 -(2∫b a 1dt)x +(∫b a 1/f(t)dt),则:f(x)=∫b a f(t) x^2 dt -2∫b a xdt +∫b a 1/f(t)dt=∫b a [f(t) x^2 -2x +1/f(t)]dt=∫b a {[f(t)^0.5 x -1/f(t)^0.5]^2}dt ≥0故这个关于x的...