1x2+2x3+3x4+4x5+...+n(n+1)=?(n为正整数)

问题描述:

1x2+2x3+3x4+4x5+...+n(n+1)=?(n为正整数)
上面式子结果是多少?速求.


n(n+1)=n²+n
∴原式
=1+1²+2+2²+3+3²+……+n+n²
=(1+2+3+……+n)+(1²+2²+3²+……+n²)
=(1+n)n÷2+1/6n(n+1)(2n+1)
=n(n+1)[1/2+1/6(2n+1)]
=n(n+1)(1/3n+2/3)
=1/3n(n+1)(n+2)
公式
1²+2²+3²+……+n²=1/6n(n+1)(2n+1)