记数列{an}的前n项和为Sn,若{Snan}是公差为d的等差数列,则{an}为等差数列的充要条件是d=_.

问题描述:

记数列{an}的前n项和为Sn,若{

Sn
an
}是公差为d的等差数列,则{an}为等差数列的充要条件是d=______.

由于{

Sn
an
}的首项为:
S1
a1
=1

Sn
an
=1+(n-1)d得:
S2
a2
=1+d
,算得a2=
1
d
a1,同理算得a3=(a1+
1
d
a1)×
1
2d

由2a2=a1+a3(a1不等于0)可得:2d2-3d+1=0,⇔d=1或d=1/2.
故答案为:1或
1
2