已知向量OB=(2,0),向量OC=(2,2) ,向量CA=(√2sinα,√2cosα),求向量OA与向量OB夹角的取值范围

问题描述:

已知向量OB=(2,0),向量OC=(2,2) ,向量CA=(√2sinα,√2cosα),求向量OA与向量OB夹角的取值范围

向量CA=OA-OC=(√2sina,√2cosa)
则:OA=(2+√2sina,2+√2cosa)
点A在以(2,2)为圆心、以√2为半径的圆上运动,点B(2,0),结合图形,得:
OA与OB的夹角的范围是:
[15°,75°]