x1,x2是方程2x^2-6X+3=0的两个根,1/x1+1/x2的值为

问题描述:

x1,x2是方程2x^2-6X+3=0的两个根,1/x1+1/x2的值为

2x^2-6x+3=0
x1+x2=3
x1x2=3/2

1/x1+1/x2=(x1+x2)/(x1x2)=2

x1+x2=6/2=3
x1x2=3/2

1/x1+1/x2
=(x1+x2)/x1x2
=3/(3/2)
=2

2
两根相加等于-b/a,两根相乘为c/a,所以1/x1+1/x2=(x1+x2)/x1*x2
a=2,b=-6,c=3,带入即为-(-6)/2*3/2=2

2 用伟达定理

根据“韦达定理”得:
x1+x2=-(-6/2)=3 x1*x2=3/2
则:1/x1+1/x2
=(x1+x2)/(x1*x2)
=3/3/2
=2 .