数列{An}中,a1=2,a (n+1)=4an-3n+1,n为N*

问题描述:

数列{An}中,a1=2,a (n+1)=4an-3n+1,n为N*
1,证明:数列{an - n}是等比数列
2,求数列{an}前n项和Sn
3,证明不等式S(n+1)

数学人气:696 ℃时间:2019-10-27 10:15:05
优质解答
1.a (n+1)=4an-3n+1=>a(n+1) - (n+1) = 4(an -n){an - n}是等比数列 2.an-n = 4^(n-1)*(a1-1)=4^(n-1)=>an=4^(n-1) + nSn = (1+4+16+……+4^(n-1))+(1+2+3+……+n)=(4^n - 1)/(4-1) + n(n+1)/2=(4^n - 1)/3 + n(n+1...
我来回答
类似推荐

1.a (n+1)=4an-3n+1=>a(n+1) - (n+1) = 4(an -n){an - n}是等比数列 2.an-n = 4^(n-1)*(a1-1)=4^(n-1)=>an=4^(n-1) + nSn = (1+4+16+……+4^(n-1))+(1+2+3+……+n)=(4^n - 1)/(4-1) + n(n+1)/2=(4^n - 1)/3 + n(n+1...