an^2=Sn+Sn-1(n大于等于2),a1=1,求数列an的通项公式
问题描述:
an^2=Sn+Sn-1(n大于等于2),a1=1,求数列an的通项公式
答
a1= 1
(an)^2 = Sn + S(n-1)
= Sn - S(n-1) + 2S(n-1)
2S(n-1) = (an)^2 - an
an = Sn - S(n-1)
2an = (a(n+1))^2 - a(n+1) - (an)^2 + an
(a(n+1))^2 - a(n+1) - (an)^2 - an =0
[a(n+1) + an].[ a(n+1)-an -1 ] =0
case 1
a(n+1) + an =0
an = (-1)^(n-1) .a1
= (-1)^(n-1)
case 2
a(n+1)-an -1 =0
a(n+1)-an =1
an - a1=n-1
an = n设bn=(1-an)^2-a(1-an),若bn+1大于bn对任意n恒成立,求实数a的取值范围接第一问,设bn=(1-an)^2-a(1-an),若bn+1大于bn对任意n恒成立,求实数a的取值范围不用了,做出来了,谢谢