已知函数f(x)=1/2ax^2+2x,g(x)=lnx.问是否存在实数a>0,使得方程Q(x)=g(x)╱x-f'(x)+(2a+1)在区间(1/e,e)内只有两个不相等的实数根?若存在,求a的取值范围;若不存在,请说明理由.

问题描述:

已知函数f(x)=1/2ax^2+2x,g(x)=lnx.问是否存在实数a>0,使得方程Q(x)=g(x)╱x-f'(x)+(2a+1)在区间(1/e,e)内只有两个不相等的实数根?若存在,求a的取值范围;若不存在,请说明理由.

解析:∵函数f(x)=1/2ax^2+2x,a>0,∴f’(x)=ax+2
∵g(x)=lnx
∴Q(x)=g(x)/x-f'(x)+(2a+1)=lnx/x-ax+2a-1,其定义域为x>0
令Q’(x)=(1-lnx)/x^2-a=0==>ax^2+lnx-1=0
显然,当a=1,x=1时,ax^2+lnx-1=0成立
当00;当x>1时,Q’(x)即此时,Q(x)=0有一个实数根
∴当0当a>1时,Q(x)=0有二个实数根

∵Q(x)=lnx/x-ax+2a-1=lnx/x-(x-2)a-1
令(x-2)a=0==>x=2∴当x=2时,Q(2)=ln2/2-1,即点(2,ln2/2-1)为无论a取何值函数Q(x)必过的一个定点
令x=1/e
代入Q(1/e)=-e-(1/e-2)a-1==>a=(e^2+e)/(2e-1)>e
∴Q(x)=0在区间(1/e,e)内有二个实数根时,a的取值范围为1

已知函数f(x)=1/2ax^2+2x,g(x)=lnx.问是否存在实数a>0,使得方程Q(x)=g(x)╱x-f'(x)+(2a+1)在区间(1/e,e)内只有两个不相等的实数根?若存在,求a的取值范围;若不存在,请说明理由.
解析:∵函数f(x)=1/2ax^2+2x,a>0,∴f’(x)=ax+2
∵g(x)=lnx
∴Q(x)=g(x)/x-f'(x)+(2a+1)=lnx/x-ax+2a-1,其定义域为x>0
令Q’(x)=(1-lnx)/x^2-a=0==>ax^2+lnx-1=0
显然,当a=1,x=1时,ax^2+lnx-1=0成立
当01时,Q’(x)e
∴Q(x)=0在区间(1/e,e)内有二个实数根时,a的取值范围为1