求证arctan1+arctan2+arctan3=π.

问题描述:

求证arctan1+arctan2+arctan3=π.

arctana+arctanb=arctan[(a+b)/(1-ab)]
arctan1+arctan2+arctan3=arctan1+arctan(-1)+π=π

因为arctan1=π/4
只要证明arctan2+arctan3=3π/4即可,
因为tan(arctan2+arctan3)=(2+3)/(1-2*3)=-1
又π/4