已知数列{an}前n项和为Sn,a1=2,Sn=n2+n,(1)求数列{an}的通项公式 (2)设{1/Sn}的前n项和为Tn,求证Tn
已知数列{an}前n项和为Sn,a1=2,Sn=n2+n,(1)求数列{an}的通项公式 (2)设{1/Sn}的前n项和为Tn,求证Tn
通项是{2,n2,0,0,0,0,0,0,0,0}
(1)Sn=n²+n,S(n-1)=(n-1)²+n-1(n>1)
{an}的通项公式 an=Sn-S(n-1)=n²+n-[(n-1)²+n-1]=2n
(2)1/Sn=1/(n²+n)=1/n-1/(n+1)
Tn=1-1/2+1/2-1/3+....+1/n-1/(n+1)=1-1/(1+n)
(1)n>=2 a1=2,Sn=n2+n ∴an=Sn-S(n-1)=n^2+n-(n-1)^2-(n-1)=2n-1+1=2n
(2)Sn=(2+2n)n/2=n(n+1)
1/Sn=1/n-1/(n+1)
Tn=1-1/2+1/2-1/3+....+1/n-1/(n+1)=1-1/(1+n)
n>=2:
an=Sn-S(n-1)=n^2+n-(n-1)^2-(n-1)=2n-1+1=2n
(2)Sn=(2+2n)n/2=n(n+1)
1/Sn=1/n-1/(n+1)
Tn=1-1/2+1/2-1/3+....+1/n-1/(n+1)=1-1/(1+n)
(1)n≥2时,an=Sn-S(n-1)=n²+n-(n-1)²-(n-1)=2n.
又a1=2,所以an=2n.
(2)1/Sn=1/[n(n+1)]=1/n-1/(n+1).
所以Tn=(1-1/2)+(1/2-1/3)+...+[1/n-1/(n+1)]=1-1/(n+1)