求数列(3n-1)*2^(n-1)的前n项和Sn
问题描述:
求数列(3n-1)*2^(n-1)的前n项和Sn
答
由Sn=2•1+5•2+8•2^2+…+(3n-1)•2^(n-1),得2Sn= 2•2+5•2^2+…+(3n-4)•2^(n-1)+(3n-1)•2^n,后式减去前式,得-Sn=2+3(2+2^2+…+2^(n-1))-(3n-1)•2^n=2+3[2^n-2]-...