数列1/n*(n+1)求和 Sn=1/(1*2)+1/(2*3)+1/(3*4)+.+1/[n*(n+1)]Sn=1/(1*2)+1/(2*3)+1/(3*4)+.+1/[n*(n+1)] 求和 怎么 算

问题描述:

数列1/n*(n+1)求和 Sn=1/(1*2)+1/(2*3)+1/(3*4)+.+1/[n*(n+1)]
Sn=1/(1*2)+1/(2*3)+1/(3*4)+.+1/[n*(n+1)]
求和 怎么 算

Sn=1/(1*2)+1/(2*3)+…+1/(n*n+1)
=(1/1-1/2)+(1/2-1/3)+…+[1/n-1/(n+1)]
=1-1/(n+1)
=n/(n+1)

1/n(n+1)
=[(n+1)-n]/n(n+1)
=(n+1)/n(n+1)-n/n(n+1)
=1/n-1/(n+1)
所以原式=1/1-1/2+1/2-1/3+……+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)

1/(1*2) = 1-1/2 1/(2*3) = 1/2-1/31/(3*4) = 1/3-1/4.1/[n*(n+1)] =1/n-1/(n+1) 把上面的相加 第一个的-1/2 和第二个的1/2 抵消 第二个的-1/3 和第三个的1/3 抵消 以此类推 前一项的后面都可以写后一项的前面抵...