已知直四棱柱ABCD-A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A=90°,AB∥CD,AB=4,AD=2,DC=1,求异面直线BC1与DC所成的角的大小.(结果用反三角函数表示)
问题描述:
已知直四棱柱ABCD-A1B1C1D1中,AA1=2,底面ABCD是直角梯形,∠A=90°,AB∥CD,AB=4,AD=2,DC=1,求异面直线BC1与DC所成的角的大小.(结果用反三角函数表示)
答
由题意AB∥CD,∴∠C1BA是异面直线BC1与DC所成的角.连接AC1与AC,在Rt△ADC中,可得AC=5.又在Rt△ACC1中,可得AC1=3.在梯形ABCD中,过C作CH∥AD交AB于H,得∠CHB=90°,CH=2,HB=3,∴CB=13.又在Rt△CBC1中,可...