已知方程x²+y²-2(t+3)x+2(1-4t²)y+16t²+9=0表示一个圆,求:⑴t的取值范围⑵圆的半径r最大时t的值
问题描述:
已知方程x²+y²-2(t+3)x+2(1-4t²)y+16t²+9=0表示一个圆,求:
⑴t的取值范围
⑵圆的半径r最大时t的值
答
查一下原题中1-4t²是否为1-4t,否则计算太复杂,下面对改为1-4t的情况进行求
(1)、x²+y²-2(t+3)x+2(1-4t)y+16t²+9=0
——》[x-(t+3)]^2+[y+(1-4t)]^2=(t+3)^2+(1-4t)^2-16t^2-9=(t-1)^2
方程表示圆,则t≠1;
(2)、圆的半径r=丨t-1丨,没有最大值。
答
①x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0
[x-(t+3)]^2+[y+(1-4t^2)]^2=-16t^4-9+(t+3)^2+(1-4t^2)^2
则-16t^4-9+(t+3)^2+(1-4t^2)^2〉0
-16t^4-9+t^2+6t+9+1-8t^2+16t^4>0
-7t^2+6t+1>0
7t^2-6t-1