(x^2)+(y^2)-2(t+3)x+2(1-4t^2)y+(16t^4)+9=01.t为何值时,方程表示圆?2.t为何值时,半径R的值大?

问题描述:

(x^2)+(y^2)-2(t+3)x+2(1-4t^2)y+(16t^4)+9=0
1.t为何值时,方程表示圆?
2.t为何值时,半径R的值大?

化成(x-(t+3))^2+(y-(4t^2-1))^2=17t^2-2t-16t^4+1
1. -1.10742. t=-0.4776时,半径R的值大为根号5

x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0
[x-(t+3)]^2+[y+(1-4t^2)]^2=-16t^4-9+(t+3)^2+(1-4t^2)^2
则-16t^4-9+(t+3)^2+(1-4t^2)^2〉0
-16t^4-9+t^2+6t+9+1-8t^2+16t^4>0
-7t^2+6t+1>0
7t^2-6t-1(t-1)(7t+1)-1/7当t=3/7时,R最大