等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n+2n+3则a7b7的值为______.

问题描述:

等差数列{an},{bn}的前n项和分别为Sn,Tn,若

Sn
Tn
2n+2
n+3
a7
b7
的值为______.

由等差数列的性质可得

a7
b7
=
2a7
2b7
=
a1 +a13
b1+b13
=
13×
(a1+a13)
2
13(b1+b13)
2
=
S13
T13

Sn
Tn
2n+2
n+3

S13
T13
=
2×13+2
13+3
=
7
4

故答案为
7
4

答案解析:由等差数列的性质可得
a7
b7
=
2a7
2b7
=
a1 +a13
b1+b13
=
13×
(a1+a13)
2
13(b1+b13)
2
=
S13
T13
,再由
Sn
Tn
2n+2
n+3
求出结果.
考试点:等差数列的前n项和.
知识点:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,得到
a7
b7
=
S13
T13
,是解题的关键,属于基础题.