等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n+2n+3则a7b7的值为______.
问题描述:
等差数列{an},{bn}的前n项和分别为Sn,Tn,若
=Sn Tn
则2n+2 n+3
的值为______. a7 b7
答
由等差数列的性质可得
=a7 b7
=2a7
2b7
=
a1 +a13
b1+b13
=13×
(a1+a13) 2
13(b1+b13) 2
,S13 T13
又
=Sn Tn
,2n+2 n+3
∴
=S13 T13
=2×13+2 13+3
.7 4
故答案为
.7 4
答案解析:由等差数列的性质可得
=a7 b7
=2a7
2b7
=
a1 +a13
b1+b13
=13×
(a1+a13) 2
13(b1+b13) 2
,再由S13 T13
=Sn Tn
求出结果.2n+2 n+3
考试点:等差数列的前n项和.
知识点:本题主要考查等差数列的定义和性质,等差数列的前n项和公式的应用,得到
=a7 b7
,是解题的关键,属于基础题.S13 T13