设正实数xyz满足x2-3xy+4y2-z=0,则当(xy)/z取得最大值时,2/x+1/y-2/z的最大值为

问题描述:

设正实数xyz满足x2-3xy+4y2-z=0,则当(xy)/z取得最大值时,2/x+1/y-2/z的最大值为

由x2-3xy+4y2-z=0可得x2-3xy+4y2=z,代入(xy)/z得到关于x,y的式子:(xy)/(x^2-3xy+4y^2),因为x,y均不为零,所以分子分母同除以xy,得:1/A,A=x/y +4y/x -3,A>或=1(当 x/y= 4y/x时,即x=2y),可得(xy)/z 的最大值...