已知函数f(x)=ax-a/x-2lnx(a>0),若函数f(x)在其定义域内为单调函数,求a的取值范围

问题描述:

已知函数f(x)=ax-a/x-2lnx(a>0),若函数f(x)在其定义域内为单调函数,求a的取值范围

导数f'(x)=a+a/x^2-2/x=(ax^2-2x+a)/x^2
若要f(x)在其定义域内为单调函数,则需使f'(x)≥0或f'(x)≤0恒成立
1)若f'(x)≥0恒成立,则有ax^2-2x+a≥0恒成立;
对曲线y=ax^2-2x+a,因a>0,故开口向上;
当△=4-4a^2=4(1-a^2)≤0时,y≥0恒成立,此时1≤a^2,解得a≥1
当△=4-4a^2=4(1-a^2)>0时,即0