设函数f(x)=14x4+bx2+cx+d,当x=t1时,f(x)有极小值.(1)若b=-6时,函数f(x)有极大值,求实数c的取值范围;(2)在(1)的条件下,若存在实数c,使函数f(x)在闭区间[m-2,m+2]上单调递增,求m的取值范围;(3)若函数f(x)只有一个极值点,且存在t2∈(t1,t1+1),使f′(t2)=0,证明:函数g(x)=f(x)-12x2+t1x在区间(t1,t2)内最多有一个零点.

问题描述:

设函数f(x)=

1
4
x4+bx2+cx+d,当x=t1时,f(x)有极小值.
(1)若b=-6时,函数f(x)有极大值,求实数c的取值范围;
(2)在(1)的条件下,若存在实数c,使函数f(x)在闭区间[m-2,m+2]上单调递增,求m的取值范围;
(3)若函数f(x)只有一个极值点,且存在t2∈(t1,t1+1),使f′(t2)=0,证明:函数g(x)=f(x)-
1
2
x2+t1x在区间(t1,t2)内最多有一个零点.

(1)因为f(x)=14x4+bx2+cx+d,所以h(x)=f′(x)=x3-12x+c.(2分)由题设,方程h(x)=0有三个互异的实根.考察函数h(x)=x3-12x+c,则h′(x)=0,得x=±2.所以c+16>0c−16<0.故-16<c<16.(5分)(2)...
答案解析:(1)利用条件得f′(x)=0有三个互异的实根,在对导函数求导,根据极值来下结论.
(2)先利用导函数求出函数f(x)的单调递增区间,再让闭区间[m-2,m+2]是所求区间的子集即可求m的取值范围.
(3)函数f(x)只有一个极值点,就是在导函数为0的根左右两侧的函数值异号的根只有一个x=t1.所以在x=t2两侧同号,t1<x<t2,求得(x-t22-1<0推出函数g(x)在(t1,t2)内单调减即可得结论.
考试点:利用导数研究函数的极值.


知识点:本题考查利用极值求对应变量的值.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点