你们说假如一个函数f(x)在x0点的左右导数存在且相等,但却不等于在这个点的导数值,那在这个点可不可导.我认为是可以的,书上的定义,但它后面又跟了句,此定理成立时左右导和导函数值相等.我就不懂了~

问题描述:

你们说假如一个函数f(x)在x0点的左右导数存在且相等,但却不等于在这个点的导数值,那在这个点可不可导.我认为是可以的,书上的定义,但它后面又跟了句,此定理成立时左右导和导函数值相等.我就不懂了~

如果它左右导数都存在且相等,则函数在该点可导且导数值等于左右导数值.这是导数存在的判定方法之一