设数列{An}的首项是A1=A≠1/4,且A(n+1)=1/2*An(当n为偶数时)或An+1/4(当n为奇数时)记Bn=A(2n-1)-1/4,n=1、2、3……(1)求A2、A3(2)判断{Bn}是否为等比数列,并证明你的结论

问题描述:

设数列{An}的首项是A1=A≠1/4,且A(n+1)=1/2*An(当n为偶数时)或An+1/4(当n为奇数时)
记Bn=A(2n-1)-1/4,n=1、2、3……(1)求A2、A3(2)判断{Bn}是否为等比数列,并证明你的结论

1)求A2、A3
A2=A1+1/4=A+1/4
A3=1/2A2=1/2A+1/8
2)B(n+1)/Bn
=[A(2n+1)-1/4]/[A(2n-1)-1/4]
=(1/2*A2n-1/4)/[1/2*A(2n-2)-1/4]
=(A2n-1/2)/[A(2n-2)-1/2]
=[A(2n-1)+1/4-1/2]/[A(2n-3)+1/4-1/2]
=[A(2n-1)-1/4]/[A(2n-3)-1/4]
=Bn/B(n-1)
因为B(n+1)/Bn=Bn/B(n-1),且B1=A3-1/4=1/2A-1/8≠0
所以Bn为等比数列
或者1.
A2=A1+1/4=1/2
A3=A2*1/2=1/4
2.
Bn=A(2n-1)-1/4 A(2n-1)=A[(2n-2)+1] (2n-2)为偶数,所以
=A(2n-2)*1/2-1/4 A(2n-2)=A[(2n-3)+1] (2n-3)为奇数,所以
=[A(2n-3)+1/4]*1/2-1/4
=1/2A(2n-3)-1/8
=1/2[A(2n-3)-1/4]
=1/2Bn-1
所以是等比数列

1.
A2=A1+1/4=1/2
A3=A2*1/2=1/4
2.
Bn=A(2n-1)-1/4 A(2n-1)=A[(2n-2)+1] (2n-2)为偶数,所以
=A(2n-2)*1/2-1/4 A(2n-2)=A[(2n-3)+1] (2n-3)为奇数,所以
=[A(2n-3)+1/4]*1/2-1/4
=1/2A(2n-3)-1/8
=1/2[A(2n-3)-1/4]
=1/2Bn-1
所以是等比数列

1)求A2、A3
A2=A1+1/4=A+1/4
A3=1/2A2=1/2A+1/8
2)B(n+1)/Bn
=[A(2n+1)-1/4]/[A(2n-1)-1/4]
=(1/2*A2n-1/4)/[1/2*A(2n-2)-1/4]
=(A2n-1/2)/[A(2n-2)-1/2]
=[A(2n-1)+1/4-1/2]/[A(2n-3)+1/4-1/2]
=[A(2n-1)-1/4]/[A(2n-3)-1/4]
=Bn/B(n-1)
因为B(n+1)/Bn=Bn/B(n-1),且B1=A3-1/4=1/2A-1/8≠0
所以Bn为等比数列