在RT三角形ABC中,角ACB=90,角A=30,CD垂直AB于D,那么三角形ACD与三角形BCD的面积比

问题描述:

在RT三角形ABC中,角ACB=90,角A=30,CD垂直AB于D,那么三角形ACD与三角形BCD的面积比

∵∠ACB=90°,∠A=30°,CD⊥AB
易证∠BCD=30°
设BD=1,则BC=2
∴AB=4
∴AD=3
∴S△ACD∶S△BCD=3∶1(两个三角形等高,面积比等于底的比)
我觉得这个方法最简单

设BC=m 则AB=2m AC=根号3倍m
根据面积建立等式 m*根号3倍m/2=2m*CD/2
CD=根号3倍m/2
BD=m/2 所以AD=3/2 m
AD:BD=3:1
三角形ACD与三角形BCD的面积比 =AD*CD/2 : BD*CD/2=AD:BD=3:1
若知道射影定理则更快,还可以用相似三角形、求角度等方法找特殊关系

容易证明:三角形ACD与三角形BCD相似
所以,
三角形ACD与三角形BCD的面积比
=(BC/AC)^2
=(1/√3)^2
=1/3

3:1