已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.
问题描述:
已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.
答
证明:∵∠ACB=90°,∴∠ACD=∠ACB=90°,在△BEC和△ADC中∵BC=AC∠BCE=∠ACDCE=CD,∴△BEC≌△ADC(SAS),∴∠CBE=∠DAC,∵∠ACB=90°,∴∠CBE+∠CEB=90°,∵∠CEB=∠AEF,∴∠DAC+∠AEF=90°,∴∠AFE=1...
答案解析:求出△BEC≌△ADC,推出∠CBE=∠DAC,根据∠CBE+∠CEB=90°推出∠DAC+∠AEF=90°,求出∠AFE=90°,根据垂直定义求出即可.
考试点:全等三角形的判定与性质;等腰直角三角形.
知识点:本题考查了全等三角形的性质和判定,垂直定义,三角形的内角和定理等知识点,关键是求出∠CBE=∠DAC,主要考查学生运用定理进行推理的能力.