已知向量a=(sina,cosa),b=(2,5cosa),a∈(π/2,π),若a·b=22/5,则tan(a+π/4)=

问题描述:

已知向量a=(sina,cosa),b=(2,5cosa),a∈(π/2,π),若a·b=22/5,则tan(a+π/4)=

根据题意得a·b=2sina+5cos^2a=2sina+5(1-sina^2)=22/5
化简为25sina^2-10sina-3=0
解得sina=3/5或者-1/5
又∵a在第二角限知sina为正,所以sina=3/5,
∴tana=-3/4
∴tan(a+π/4)=(tana+tanπ/4)/(1-tanatanπ/4)=1/7

你好

a·b
=2sina+5cos ²a
=2sina+5(1-sin²a)
=2sina+5-5sin²a
=22/5
10sina+3-25sin²a=0
25sin²a-10sina-3=0
(5sina+1)(5sina-3)=0
sina=-1/5[a∈(π/2,π),sina>0,故舍去]
或者sina=3/5
则tan=-3/4
tan(a+π/4)
=(tana+tanπ/4)/(1-tana*tanπ/4)
=(-3/4+1)/[1-(-3/4)]
=(1/4)/(7/4)
=1/7

【数学辅导团】为您解答,不理解请追问,理解请及时选为满意回答!(*^__^*)谢谢!

a·b=2sina+5cos²a=22/5
得:cos²a=22/25-2sina/5
代入sin²a+cos²a=1
得:sin²a-2sina/5-3/25=0
25sin²a-10sina-3=0
(5sina+1)(5sina-3)=0
sina=-1/5或sina=3/5
因为a∈(π/2,π)
所以,sina>0
所以,sina=3/5
则:cosa=-4/5
tana=-3/4
tan(a+π/4)=(tana+1)/(1-tana)=1/7

根据向量的数量积算法,a·b=2sina+5cos^2a=2sina+5(1-sina^2)=22/5
解关于sina的一元二次方程,解得sina=3/5或者-1/5
由a在第二角限知sina为正,所以sina=3/5,所以tana=-3/4
所以tan(a+π/4)=(tana+tanπ/4)/(1-tanatanπ/4)=1/7