证明题:在三角形ABC中,a=10,B=60度,C=45度,则b的值为?

问题描述:

证明题:在三角形ABC中,a=10,B=60度,C=45度,则b的值为?

过A做AD垂直BC于D
∠CAD=90-∠C=90-45=45
所以AD=CD
AC=b,AD=CD=√2/2b
BD=AD*cot60=√3/3*√2/2b=√6/6b
BC=10
BD+CD=10
√2/2b+√6/6b=10
b=15√2-5√6

A向BC边作垂线交与o,,ao=co边可求根号(1/2)b,bo边可求10-根号(1/2)b
根据三角关系,根号3/3=bo/ao

∠A = 180° - ∠B - ∠C = 75°,在三角形中:
a / sinA = b / sinB
∴b = a sinB / sinA = 10 * sin60° / sin75°
= 10 * sin60° / (sin45°cos30° + sin30°cos45°)
=15*(根号2) -5*(根号6)

B=60,C=45
sinA
=sin〔180-(60+45)〕
=sin(60+45)
=sin60cos45+cos60sin45
=√3/2×√2/2√+1/2×√2/2
=(√6+√2)/4
因为a/sinA=b/sinB
b=asinB/sinA
=10×√3/2÷(√6+√2)/4
=15√2-5√6