数列{an}满足a1=2,a2=5,an+2=3an+1-2an. (1)求证:数列{an+1-an}是等比数列; (2)求数列{an}的通项公式; (3)求数列{an}的前n项和Sn.

问题描述:

数列{an}满足a1=2,a2=5,an+2=3an+1-2an
(1)求证:数列{an+1-an}是等比数列;
(2)求数列{an}的通项公式;
(3)求数列{an}的前n项和Sn

(1)由题意知:an+2-an+1=2(an+1-an).∴an+2−an+1an+1−an=2,故数列{an+1−an}是等比数列(4分).(2)由(1)知数列{an+1-an}以是a2-a1=3为首项,以2为公比的等比数列,∴an+1-an=3•2n-1,∴a2-a1=3•20,...