已知在正方体ABCD-A'B'C'D'中,E,F分别是棱BC,CC'的中点,求EF与A'C'所成角的大小
问题描述:
已知在正方体ABCD-A'B'C'D'中,E,F分别是棱BC,CC'的中点,求EF与A'C'所成角的大小
答
连接BC'和A'B;在△CBC'中,EF是BC和C'C上的中位线,所以EF//BC'①;在△BA'C'中,A'B、A'C'、BC'均是正方形的对角线,所以△BA'C'是等边△,所以∠BC'A'=60°,所以根据①,EF和A'C'的夹角也是60°.