求证:二项式展开式中奇数项系数之和等于偶数项系数之和

问题描述:

求证:二项式展开式中奇数项系数之和等于偶数项系数之和

定理(1)二项式系数和等于2^n ∵(1+x)^n=Cn0+Cn1x+Cn2x^2+Cn3x^3+…+Cnnx^n 令x=1得 Cn0+Cn1+Cn2+…+Cnn=2^n 定理2:奇数项二项式系数和等于偶数项二项式系数和 ∵(1+x)^n=Cn0+Cn1x+Cn2x^2+Cn3x^3+…+Cnnx^n 令x=1得 C...