点D、E分别在三角形ABC的AB、AC上 1)如果DE//BC,三角形ADE面积为4,三角形BCE面积为24,求三角形BDE面积 2

问题描述:

点D、E分别在三角形ABC的AB、AC上 1)如果DE//BC,三角形ADE面积为4,三角形BCE面积为24,求三角形BDE面积 2
2)如果三角形ADE面积为S1,三角形BDE面积为S2,那么当三角形BCE与S1、S2满足什么等量关系时,ED//BC

1)相似三角形的面积比等于相似比的平方
因为DE//BC,所以ΔAED相似于ΔABC
设DE=a,BC=b SΔBDE=x(面积)
则(a/b)^2=4/(4+x+24) 即(a/b)^2=4/(28+x)
ΔBDE和ΔBCD有相等的高,设为h
则SΔBDE=ah/2=x.(2)
SΔBCD=bh/2=24 .(3)
将(2)比(3)得a/b=x/24.(4)(即ΔBDE的面积/ΔBCE的面积=DE/BC)
将(4)代入(1)得:(x/24)^2=4/(28+x)
解得到三角形BDE面积 x=8
2)设S△BCE=S3
则S2/S3=DE/BC=AD/AB=S△ADE/S△ABE=S1/(S1+S2)
∴S3=S2(S1+S2)/S1