已知直线y=x+k与抛物线y^2=2x相交于AB两点,且OA垂直于OB(O为直角坐标轴的原点) (1)求k的值(2)求S△AOB

问题描述:

已知直线y=x+k与抛物线y^2=2x相交于AB两点,且OA垂直于OB(O为直角坐标轴的原点) (1)求k的值(2)求S△AOB

(1)直线代入抛物线整理得
x²+(2k-2)x+k²=0
设A(x1,y1)B(x2,y2).则x1+x2=2-2k,x1x2=k² y1y2=x1x2+k(x1+x2)+k²=2k²+2k-2k²=2k
∵OA⊥OB
∴OA²+OB²=AB²
即x1²+y1²+x2²+y2²=(x1-x2)²+(y1-y2)²
x1x2+y1y2=0
k²+2k=0
∴k=-2(0舍去)
(2)k=-2时,x²-6x+4=0∴x1=3-根号5 x2=3+根号5∴y1=1-根号5 y2=1+根号5
∴OA²=14-6根号5+6-2根号5=20-8根号5,OB²=20+8根号5
所以S△AOB=1/2*OA*OB=1/2根号(400-320)=2根号5