数列3/2,17/4,57/8,161/16.前n项和Sn

问题描述:

数列3/2,17/4,57/8,161/16.前n项和Sn

3/2,17/4,57/8,161/16.转化一下,1+1/2,4+1/4,7+1/8,10+1/16.可以看出该数列由一个等差数列+一个等比数列组成的.
等差数列:1,4,7,10,.d=3,a1=1,则an=a1+(n-1)d=3n-2,Sn=na1+n(n-1)d/2 =(3n^2)/2-n/2
等比数列:1/2,1/4,1/8,1/16,.q=1/2,a1=1/2,则an=a1q^((n-1))=〖1/2〗^n,Sn=(a1(1-q^n))/(1-q)=1-〖1/2〗^n
所以所求数列通项式为An=3n-2+〖1/2〗^n,前n项和为Sn=(3n^2)/2-n/2+1-〖1/2〗^n