一般地,向量a‖向量b的充要条件是:存在不全为零的实数λ,μ∈R使λa向量+μb向量=0向量
问题描述:
一般地,向量a‖向量b的充要条件是:存在不全为零的实数λ,μ∈R使λa向量+μb向量=0向量
求证明
答
充要条件
先是充分性:向量a‖向量b 所以向量a 和 向量b 方向 相反或相同 ,所以存在 λa向量+μb向量=0向量
至于不全为零,如果u为零,向量b就可能是任意向量,所以向量a为零向量
必要性 λa向量+μb向量=0向量 存在不全为零的实数λ,μ∈R 所以满足 a向量=Xb向量(X不等于0)是必要性还是充分性中的为什么“存在 λa向量+μb向量=0向量 ”