如图,在平面直角坐标系中,点P从原点出发,沿x轴向右以每秒2个单位长的速度运动t(t>0)秒,抛物线y=-x2+bx+c经过原点O和点P,顶点为M.矩形ABCD的一边CD在x轴上,点C与原点重合,CD=4,BC=

问题描述:

如图,在平面直角坐标系中,点P从原点出发,沿x轴向右以每秒2个单位长的速度运动t(t>0)秒,抛物线y=-x2+bx+c经过原点O和点P,顶点为M.矩形ABCD的一边CD在x轴上,点C与原点重合,CD=4,BC=9,在点P运动的同时,矩形ABCD沿x轴向右以每秒1个单位长的速度运动.
(1)求出抛物线的解析式(用含t的代数式表示);
(2)若(1)中的抛物线经过矩形区域ABCD(含边界)时,求出t的取值范围;
(3)当t=4秒时,过线段MP上一动点F作y轴的平行线交抛物线于E,求线段EF的最大值.

(1)把x=0,y=0代入y=-x2+bx+c中,得c=0,
再把x=2t,y=0代入y=-x2+bx中,得b=2t
故抛物线的解析式为y=-x2+2tx.
(2)∵t>0,
∴在点P和矩形ABCD开始运动时就经过矩形区域ABCD,
当抛物线经过点A时,将A(t+4,9)代入y=-x2+2tx中,得-(t+4)2+2t(t+4)=9,
整理,解方程得:t1=-5(舍去),t2=5,
即可得当t>5时,抛物线不在经过矩形区域ABCD,
综上可得t的范围为:0<t≤5,
(3)如图,当t=4秒时,此时点D和点P重合,抛物线的解析式为y=-x2+8x.
设直线MP的解析式为y=kx+b,
∵点M(4,16)和点P(8,0)在直线MP上,

4k+b=16
8k+b=0

k=−4
b=32

∴直线MP的解析式为y=-4x+32;
设F(m,-4m+32),则E(m,-m2+8m),
∵点F在线段MP上运动,
∴4≤m≤8,
∴EF=-m2+8m-(-4m+32)=-m2+12m-32,
∴当m=-
b
2a
=6时,EF=
4ac−b2
4a
4×(−1)×(−32)−122
4×(−1)
16
4
=4

∴线段EF的最大值是4.