等比数列{an}中,公比q=1/2,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10=_.
问题描述:
等比数列{an}中,公比q=
,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10=______. 1 2
答
∵等比数列{an}中,公比q=
,且log2a1+log2a2+…+log2a10=55=log2(a1a2…a10)=log2 (a1a10) 5,1 2
∴(a1a10)5=255,a1a10=211=a12(
)9,故 a1=210.1 2
∴a1+a2+…+a10 =
=
a1(1−q10) 1−q
=211-2,
210[1−(
)10]1 2 1−
1 2
故答案为 211-2.