如图,在梯形ABCD中,DC∥AB,∠A+∠B=90°.若AB=10,AD=4,DC=5,则梯形ABCD的面积为_.
问题描述:
如图,在梯形ABCD中,DC∥AB,∠A+∠B=90°.若AB=10,AD=4,DC=5,则梯形ABCD的面积为______.
答
法一:分别过D、C点作DE⊥AB于E、CF⊥AB于F.
设AE=x,BF=y,DE=CF=h.
∵△ADE和△BCF都是直角三角形,
且∠A+∠B=90°,
∴△ADE∽△CBF.
∴
=h x
.y h
即h2=xy.
在△ADE中,
∵AD=4,
∴h2=16-x2.
∴xy=16-x2.
而x+y=AB-CD=10-5=5,
∴y=5-x.
∴x(5-x)=16-x2,
x=
.16 5
∴h=
=
16−(
)2
16 5
.12 5
故梯形ABCD的面积为
(10+5)×1 2
=18.12 5
法二:过点C作CE∥AD交AB于E,作CH⊥AB于H,
∵CD∥AB,
∴四边形AECD是平行四边形,
∴AE=CD=5,CE=AD=4,∠CEB=∠A,
∴BE=AB-AE=5.
∵∠A+∠B=90°,
∴∠BCE=90°,
∴BC=3,
∴CH=
=CE•BC BE
,12 5
∴梯形ABCD的面积为
(10+5)×1 2
=18.12 5