如图,在梯形ABCD中,DC∥AB,∠A+∠B=90°.若AB=10,AD=4,DC=5,则梯形ABCD的面积为_.

问题描述:

如图,在梯形ABCD中,DC∥AB,∠A+∠B=90°.若AB=10,AD=4,DC=5,则梯形ABCD的面积为______.

法一:分别过D、C点作DE⊥AB于E、CF⊥AB于F.
设AE=x,BF=y,DE=CF=h.
∵△ADE和△BCF都是直角三角形,
且∠A+∠B=90°,
∴△ADE∽△CBF.

h
x
y
h

即h2=xy.
在△ADE中,
∵AD=4,
∴h2=16-x2
∴xy=16-x2
而x+y=AB-CD=10-5=5,
∴y=5-x.
∴x(5-x)=16-x2
x=
16
5

h=
16−(
16
5
)
2
=
12
5

故梯形ABCD的面积为
1
2
(10+5)×
12
5
=18.
法二:过点C作CE∥AD交AB于E,作CH⊥AB于H,
∵CD∥AB,
∴四边形AECD是平行四边形,
∴AE=CD=5,CE=AD=4,∠CEB=∠A,
∴BE=AB-AE=5.
∵∠A+∠B=90°,
∴∠BCE=90°,
∴BC=3,
∴CH=
CE•BC
BE
=
12
5

∴梯形ABCD的面积为
1
2
(10+5)×
12
5
=18.