函数y=sin^2-2asinx+1+a^2在x=2kπ+π/2(k属于z)时取得最大值,在sinx=a时取得最小值,求实数a的取值范围

问题描述:

函数y=sin^2-2asinx+1+a^2在x=2kπ+π/2(k属于z)时取得最大值,在sinx=a时取得最小值,求实数a的取值范围

y=(sinx-a)²+1
开口向上,对称轴sinx=a
sinx=a有最小值
-1