y=x2+(1-a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是(  )A. a≤-5B. a≥5C. a=3D. a≥3

问题描述:

y=x2+(1-a)x+1是关于x的二次函数,当x的取值范围是1≤x≤3时,y在x=1时取得最大值,则实数a的取值范围是(  )
A. a≤-5
B. a≥5
C. a=3
D. a≥3

第一种情况:当二次函数的对称轴不在1≤x≤3内时,此时,对称轴一定在1≤x≤3的右边,函数方能在这个区域取得最大值,x=a−12>3,即a>7,第二种情况:当对称轴在1≤x≤3内时,对称轴一定是在区间1≤x≤3的中点的右...
答案解析:由于二次函数的顶点坐标不能确定,故应分对称轴不在[1,3]和对称轴在[1,3]内两种情况进行解答.
考试点:二次函数的最值.


知识点:本题考查了二次函数的最值确定与自变量x的取值范围的关系,难度较大.