已知数列{an}满足a1=1,an+1-an=2的n次方(n∈N*)1.求通项公式 2.设bn=n.an,求{bn}的前n项和Sn
问题描述:
已知数列{an}满足a1=1,an+1-an=2的n次方(n∈N*)1.求通项公式 2.设bn=n.an,求{bn}的前n项和Sn
答
an+1=(an+1-an)+(an-an-1)+...(a2-a1)+a1=2^n+2^(n-1)+...+2+1=2*(2^n-1)=2^(n+1)-2+1所以 an=2^n-1因为 bn=n*2^n-n所以 Sn=(1*2^1-1)+(2*2^2-2)+(3*2^3-3)+...+(n*2^n-n) 则2*Sn=(1*2^2-2)+(2*2^3-4)+(3*2^4-6)+......