求与椭圆x^2/64+y^2/16=1有相同焦点,且一条 渐近线的议程是x+(√3)y=0的双曲线的标准方程.
问题描述:
求与椭圆x^2/64+y^2/16=1有相同焦点,且一条 渐近线的议程是x+(√3)y=0的双曲线的标准方程.
答
因为椭圆方程为x²/64+y²/16=1
所以焦点坐标为(4√3,0)和(-4√3,0)
又因为双曲线与椭圆有相同焦点
所以设双曲线的标准方程为x²/a²-y²/b²=1(a>0,b>0)
有a²+b²=(4√3)²=48 ①
又因为双曲线的一条渐近线为x+(√3)y=0即y=-(√3/3)x
所以-b/a=-(√3/3) ②
联立①、②解得a=6,b=2√3
所以双曲线的标准方程为x²/36-y²/12=1