设函数f(x)有界,又lim(x→∞)g(x)=0,证明:lim(x→∞)f(x)g(x)=0(证明过程)
问题描述:
设函数f(x)有界,又lim(x→∞)g(x)=0,证明:lim(x→∞)f(x)g(x)=0(证明过程)
答
函数f(x)有界,设 |f(x)|
∵ lim(x->∞) M*|g(x)| = 0
∴ 由夹逼定理:
lim(x->∞) f(x)g(x) = 0