若实数x、y、z满足x2+y2+z2=1,则xy+yz+zx的取值范围是(  ) A.[-1,1] B.[-12,1] C.[-1,12] D.[-12,12]

问题描述:

若实数x、y、z满足x2+y2+z2=1,则xy+yz+zx的取值范围是(  )
A. [-1,1]
B. [-

1
2
,1]
C. [-1,
1
2
]
D. [-
1
2
1
2
]

xy+yz+zx≤

x2+y2
2
+
y2+z2
2
+
x2+z2
2
x2+y2+z2=1,
又∵2(xy+yz+zx)=(x+y+z)2-(x2+y2+z2)≥0-1=-1,
xy+yz+zx≥−
1
2

故选B.