已知函数f(x)=-4x²+4ax-4a-a²在区间[0,1]内有最大值-5,求实数a的值

问题描述:

已知函数f(x)=-4x²+4ax-4a-a²在区间[0,1]内有最大值-5,求实数a的值

f(x)= -(2x-a)^2-4a ,抛物线开口向下,对称轴 x=a/2 .
以下分类讨论:
1)若 a/2所以,a^2+4a-5=0 ,(a-1)(a+5)=0 ,
因此 a= -5 或 a=1(舍去,因为它大于 0).
2)若 a/2>1 即 a>2 ,则 f(x) 在 [0,1] 上递增,因此最大值为 f(1)= -4+4a-4a-a^2= -5 ,
所以,a^2-1=0 ,a=±1(均舍去,因为它们都比 2 小).
3)若 0因此最大值为 f(a/2)= -4a=-5 ,解得 a=5/4 .
综上可得,所求的 a 的值为 -5 或 5/4 .