向量a=(1,1),向量b=(1,-1),向量c=(√cosα,√sinα),α∈R,实数m,n满足ma+nb=c,则(m-3)^2+n^2最大为?

问题描述:

向量a=(1,1),向量b=(1,-1),向量c=(√cosα,√sinα),α∈R,实数m,n满足ma+nb=c,则(m-3)^2+n^2最大为?
a 、b、c都是向量,m、n都是实数.
汗水。是根号2倍 cos和 sin 2没打出来?不过还没学解析几何。

因为ma+nb=c,所以m+n=√cosα,m-n=√sinα.两个式子分别平方后相加,得m²+n²=1/2,可以看成(m、n)是以原点为圆心,√1/2为半径的园上的点.求的是(m-3)^2+n^2的最大值,这种形式可以看成是距离的平方形式,即...